Light and Matter Interaction in TMDC Systems

Isak Johnson
Advisor: Prof. Hui Deng
Mentors: Tim Chou, Jason Horng, Long Zhang
Outline

• Two-dimensional Transition Metal Dichalcogenides (TMDCs)
• Light Matter Interaction: Polaritons
• Sample Fabrication & Transfer Process
• Light Matter Interaction: Coherent Perfect Absorption (CPA)
• Moving Forward
2D Transition Metal Dichalcogenides

Structure

- MX_2 – M transition metal, X chalcogen
 - Examples: MoSe$_2$, WSe$_2$, WS$_2$ and MoS$_2$
- Bulk layered material → monolayers

Properties

- 0.6-0.7 nm thick
- Bulk Layer → Indirect gap
- Monolayer → direct band gap
- Exciton binding energy up to 500 meV
 - Good for room temperature experiments
- High oscillator strength

Light-matter Interaction: Polaritons

• Polariton: a quasiparticle of light and matter
 • Strong coupling between a photon and an exciton

• Experimental advantages for BEC in solids at higher temperatures
 • Effective mass ~ four orders of magnitude lighter than an exciton
 • Easier to extend a phase coherent wave function despite crystal defects
Sample Fabrication

• Two methods
 • Chemical Vapor Deposition (CVD)
 • Mechanical Exfoliation
 • Nicknamed the “scotch tape” method
Sample Fabrication: Transfer Procedure

- Transferring (or stacking) of monolayers from one substrate to another, or onto a DBR

1. Top hBN
2. Top & MoSe$_2$
3. Bottom hBN
4. Final
Power Dependence Photoluminescence

MoSe$_2$

Structure

- Silver (100 nm)
- TPBi (108 nm)
- SiO$_2$ - 18.5 pairs
- TiO$_2$
- Double polished sapphire

Monolayer
Light and Matter Interaction: Coherent Perfect Absorption (CPA)

- Two counter propagating waves
- Destructive interference
 - Thin film located at antinode
- 100% absorption at antinode of standing wave
Preliminary Results

Substrate

Bulk

Monolayer

R-BG = Reflection – Background
T-BG = Transmission – Background
R+T-BG = Reflection + Transmission - Background
Moving Forward

• Complete CPA experiment
• Continue CPA with different materials
• Explore new exfoliation methods
Acknowledgements

Many thanks to:

University of Michigan REU Program
Prof. Myron Campbell, Prof. James Liu, Grace Johnson

Deng Lab
Prof. Hui Deng, Tim Chou, Jason Horng, Long Zhang

NSF

Fellow University of Michigan 2017 REU researchers