Searching and Testing New Materials for Cantilevers

REU Program Dou Liu Advisor: Lu Li

What is a cantilever

• We are focusing on cantilevers for measuring the magnetic torque.

Principle

Force: $F = M \cdot \frac{dB}{dz}$ Torque: $\tau = M \times B$

M is magnetization

Magnetic field is applied in the xz-plane. The torque is in y-direction

$$\vec{\tau} = \mu_0 \vec{M} \times \vec{H} = \mu_0 (M_z H_x - M_x H_z) \hat{y}$$
$$= \mu_0 (\chi_z H_z H_x - \chi_x H_x H_z) = \Delta \chi \mu_0 H^2 \sin \phi \cos \phi$$

 $\Delta\chi$ is the magnetic susceptibility anisotropy Torque magnetometry measures the magnetic susceptibility anisotropy of samples.

Principle(continue)

The torque is measured capacitively

The magnetic torque leads to the deflection of the beam Resulting in change of capacitance

High sensitivity: $10^{-9} EMU$ to $10^{-11} EMU$ (for capacitance based)

No limitation of magnetic field and magnetic sample

The use of a cantilever

• Taking observing quantum oscillation as an example.

Fast Fourier Transformation

According to Landau quantization and de Haas-van Alphen effect, for metals,

$$F_{S} = \frac{\hbar}{2\pi e} A$$

A is the cross section of Fermi surface

Oscillation Frequency =325T

Pic from PhysRevLett.109.226406

Why need new materials for cantilevers?

• We need a cantilever that can be used in a pulsed field.

Requirements for materials(1)

• Why new materials? Why conductors fail to?

$$\varepsilon = -\frac{d\Phi}{dt} = -\frac{d}{dt}\int B \cdot dl = -\int \frac{dB}{dt} \cdot dl$$

eddy current produced, resulting in a torque

Pic from Institut für Festkörperphysik

Requirements for materials(2)

 A possible material should be stiff. Kapton(polyimide)3.2GPa Metals Brass 100-125GPa and alloys Stiff 100 Concrete diamond 1220GPa YOUNG'S MOUDULUS (GPa) Brick quartz 97.2GPa (para) Porous Ceramics 76.5GPa (per) Ceramic varies Polymers Flexible Metallic oxide

The procedure of testing

- Before testing, find a kind of possible material and make a cantilever, measure capacitance.
- Measuring capacity signal with a static field and without control of temperature and low temperature
- If fitting well, applying a pulsed field and obtaining data.
- Analyze data. Compare different materials

Parameters

- Different kinds of materials
- The parameters of the flexible beams.
 - Length, width, thickness, shape etc

$$K = \frac{Ywt^4}{l}$$

K represents spring constant Y represents Young's modulus I,w,t represent length, width, thickness

An example: made of quartz length:5mm;width:1.2mm; thickness 100um

Cryogenic equipment

Capacitance bridge and lock-in amplifier

Thank you!