Classical Computation

- Classical computers, or just computers, rely on Boolean logic gates to execute programs.
Classical Computation

- Classical computers, or just computers, rely on Boolean logic gates to execute programs.
- All classical programs are formed from a combination of AND, OR, and NOT gates.
Classical Computation

- Classical computers, or just computers, rely on Boolean logic gates to execute programs.
- All classical programs are formed from a combination of AND, OR, and NOT gates.
- These programs are synthesized exactly, since the spectrum of possible programs is discrete.
Classical Computation

- Classical computers, or just computers, rely on Boolean logic gates to execute programs.
- All classical programs are formed from a combination of AND, OR, and NOT gates.
- These programs are synthesized exactly, since the spectrum of possible programs is discrete.
- In other words, if you can dream it, it can be done exactly.
Quantum Computation

Quantum computing utilizes a quantum system consisting of two discrete states, $|0\rangle$ and $|1\rangle$.

While a classical logic gate takes one or two inputs and returns a single output, a quantum logic gate acts as a linear map on $|\psi\rangle$. A 1-qubit quantum gate X acts on $|\psi\rangle$ to produce $|\psi'\rangle$. While classical logic gates are discrete, X can be any 2×2 matrix such that, since $|\psi|_2 = 1$, then $|\psi'|_2 = 1$.

Brent Mode (University of Louisville)

On Golden Gates and Discrepancy

August 9, 2017
Quantum Computation

Quantum computing utilizes a quantum system consisting of two discrete states, $|0\rangle$ and $|1\rangle$.

Thus, a single qubit is in the state $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$.
Quantum Computation

- Quantum computing utilizes a quantum system consisting of two discrete states, $|0\rangle$ and $|1\rangle$.
- Thus, a single qubit is in the state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$.
- While a classical logic gate takes one or two inputs and returns a single output, a quantum logic gate acts as a linear map on $|\psi\rangle$.
Quantum Computation

- Quantum computing utilizes a quantum system consisting of two discrete states, $|0\rangle$ and $|1\rangle$.
- Thus, a single qubit is in the state $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$.
- While a classical logic gate takes one or two inputs and returns a single output, a quantum logic gate acts as a linear map on $|\psi\rangle$.
- A 1-qubit quantum gate X acts on $|\psi\rangle$ to produce $|\psi'\rangle$.
Quantum Computation

- Quantum computing utilizes a quantum system consisting of two discrete states, $|0\rangle$ and $|1\rangle$.
- Thus, a single qubit is in the state $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$.
- While a classical logic gate takes one or two inputs and returns a single output, a quantum logic gate acts as a linear map on $|\psi\rangle$.
- A 1-qubit quantum gate X acts on $|\psi\rangle$ to produce $|\psi'\rangle$.
- While classical logic gates are discrete, X can be any 2×2 matrix such that, since $|\psi|^2 = 1$, then $|\psi'|^2 = 1$.
An Unfortunate Number of Definitions

- **Unitary Group** - The group of all 1-qubit quantum gates is defined as:
 \[U(2) = \{ X \in GL_2(\mathbb{C}) | X^\dagger X = I \} \].

- **Special Unitary Group**
 This can be simplified by the mapping \(X \mapsto X \sqrt{|X|} \) to be:
 \[SU(2) = \{ X \in U(2) | \det X = 1 \} \].

- **Projective Special Unitary Group**
 Further, for quantum gates it is also valid to view the gates \(X \) and \(-X \) as the same, which leads us to:
 \[PSU(2) = SU(2) / Z(SU(2)) \].

- **Metric on SU(2)**
 We need to define a notion of distance on \(SU(2) \), so we use the invariant metric,
 \[d^2_{SU(2)}(X, Y) = 1 - |\text{Tr}(X^\dagger Y)|^2 \], where \(d : SU(2) \to \mathbb{R} \geq 0 \).
An Unfortunate Number of Definitions

- **Unitary Group** - The group of all 1-qubit quntum gates is defined as:
 \[U(2) = \{ X \in GL_2(\mathbb{C}) | X^\dagger X = I \} \].

- **Special Unitary Group** - This can be simplified by the mapping \(\frac{X}{\sqrt{|X|}} \) to be:
 \[SU(2) = \{ X \in U(2) | \det X = 1 \} \].
An Unfortunate Number of Definitions

- **Unitary Group** - The group of all 1-qubit quantum gates is defined as:
 \[U(2) = \{ X \in GL_2(\mathbb{C}) | X^\dagger X = I \} \].

- **Special Unitary Group** - This can be simplified by the mapping
 \[\frac{X}{\sqrt{|X|}} \]
 to be:
 \[SU(2) = \{ X \in U(2) | \det X = 1 \} \].

- **Projective Special Unitary Group** - Further, for quantum gates it is also valid to view the gates \(X \) and \(-X \) as the same, which leads us to:
 \[PSU(2) = SU(2)/Z(SU(2)) \].
An Unfortunate Number of Definitions

- **Unitary Group** - The group of all 1-qubit quantum gates is defined as:
 \[U(2) = \{ X \in GL_2(\mathbb{C}) | X^\dagger X = I \} \].

- **Special Unitary Group** - This can be simplified by the mapping
 \[X \rightarrow \frac{X}{\sqrt{|X|}} \]
 to be:
 \[SU(2) = \{ X \in U(2) | \det X = 1 \} \].

- **Projective Special Unitary Group** - Further, for quantum gates it is also valid to view the gates \(X \) and \(-X \) as the same, which leads us to:
 \[PSU(2) = SU(2)/Z(SU(2)). \]

- **Metric on \(SU(2) \)** - We need to define a notion of distance on \(SU(2) \), so we use the invariant metric,
 \[d^2_{SU(2)}(X, Y) = 1 - \frac{|Tr(X^\dagger Y)|}{2}, \text{ where } d : SU(2) \rightarrow \mathbb{R}_{\geq 0}. \]
The Problem at Hand

- The difficulty in quantum computing is the overwhelming number of possible programs available to us as quantum logic gate circuits.
The Problem at Hand

- The difficulty in quantum computing is the overwhelming number of possible programs available to us as quantum logic gate circuits.
- Unlike in classical computing, it is impossible to exactly synthesize every possible program using a handful of gates.
The Problem at Hand

- The difficulty in quantum computing is the overwhelming number of possible programs available to us as quantum logic gate circuits.
- Unlike in classical computing, it is impossible to exactly synthesize every possible program using a handful of gates.
- This is the same problem that occurs when comparing the rational numbers to the real numbers.
The Problem at Hand

- The difficulty in quantum computing is the overwhelming number of possible programs available to us as quantum logic gate circuits.
- Unlike in classical computing, it is impossible to exactly synthesize every possible program using a handful of gates.
- This is the same problem that occurs when comparing the rational numbers to the real numbers.
- What is needed is a way to approximate every element of $SU(2)$ using a circuit built from a small set of specially chosen quantum gates.
The Problem at Hand

- The difficulty in quantum computing is the overwhelming number of possible programs available to us as quantum logic gate circuits.
- Unlike in classical computing, it is impossible to exactly synthesize every possible program using a handful of gates.
- This is the same problem that occurs when comparing the rational numbers to the real numbers.
- What is needed is a way to approximate every element of $SU(2)$ using a circuit built from a small set of specially chosen quantum gates.
- The problem is then two-fold: Find a good gate set and come up with an approximation algorithm.
An Example Universal Gate Set

A universal gate set is a 'good' gate set: The group generated by the elements in the set is dense in $SU(2)$.

My work has focused on the set T that is defined below:

$T = \{ s_1, s_2, s_3, s_{-1}^1, s_{-1}^2, s_{-1}^3, I, iX, iY, iZ \}$, where

$s_1 = \frac{1}{\sqrt{5}}(I + 2iX)$,
$s_2 = \frac{1}{\sqrt{5}}(I + 2iY)$,
$s_3 = \frac{1}{\sqrt{5}}(I + 2iZ)$,

and X, Y, Z are the Pauli matrices.

These elements are combined to form reduced words of increasing length, with iX, iY, iZ then inserted at the front to quadruple the number of elements of a certain length.

We say that $\Omega = \langle T \rangle$ is the group generated by T.

Then $V(t)$ is defined as the set of elements in Ω of length at most t.
An Example Universal Gate Set

- A universal gate set is a 'good' gate set: The group generated by the elements in the set is dense in $SU(2)$.
- My work has focused on the set T that is defined below:
 \[T = \{ s_1, s_2, s_3, s_1^{-1}, s_2^{-1}, s_3^{-1}, I, iX, iY, iZ \}, \]
 where
 \[s_1 = \frac{1}{\sqrt{5}}(I + 2iX), \quad s_2 = \frac{1}{\sqrt{5}}(I + 2iY), \quad s_3 = \frac{1}{\sqrt{5}}(I + 2iZ), \]
 and X, Y, and Z are the Pauli matrices.
An Example Universal Gate Set

- A universal gate set is a 'good' gate set: The group generated by the elements in the set is dense in $SU(2)$.
- My work has focused on the set T that is defined below:
 \[T = \{ s_1, s_2, s_3, s_1^{-1}, s_2^{-1}, s_3^{-1}, i, iX, iY, iZ \} \]
 where
 \[s_1 = \frac{1}{\sqrt{5}}(I + 2iX), \quad s_2 = \frac{1}{\sqrt{5}}(I + 2iY), \quad s_3 = \frac{1}{\sqrt{5}}(I + 2iZ), \]
 and X, Y, and Z are the Pauli matrices.
- These elements are combined to form reduced words of increasing length, with iX, iY, and iZ then inserted at the front to quadruple the number of elements of a certain length.
An Example Universal Gate Set

- A universal gate set is a 'good' gate set: The group generated by the elements in the set is dense in $SU(2)$.

- My work has focused on the set T that is defined below:

 $$T = \{s_1, s_2, s_3, s_1^{-1}, s_2^{-1}, s_3^{-1}, I, iX, iY, iZ\},$$

 where

 $$s_1 = \frac{1}{\sqrt{5}}(I + 2iX), s_2 = \frac{1}{\sqrt{5}}(I + 2iY), s_3 = \frac{1}{\sqrt{5}}(I + 2iZ),$$

 and X, Y, and Z are the Pauli matrices.

- These elements are combined to form reduced words of increasing length, with iX, iY, and iZ then inserted at the front to quadruple the number of elements of a certain length.

- We say that $\Omega = \langle T \rangle$ is the group generated by T.

Quantum Computation Theory

An Example Universal Gate Set

- A universal gate set is a 'good' gate set: The group generated by the elements in the set is dense in $SU(2)$.

- My work has focused on the set T that is defined below:
 \[T = \{ s_1, s_2, s_3, s_1^{-1}, s_2^{-1}, s_3^{-1}, I, iX, iY, iZ \}, \]
 where
 \[
 s_1 = \frac{1}{\sqrt{5}}(I + 2iX),
 s_2 = \frac{1}{\sqrt{5}}(I + 2iY),
 s_3 = \frac{1}{\sqrt{5}}(I + 2iZ),
 \]
 and X, Y, and Z are the Pauli matrices.

- These elements are combined to form reduced words of increasing length, with iX, iY, and iZ then inserted at the front to quadruple the number of elements of a certain length.

- We say that $\Omega = \langle T \rangle$ is the group generated by T.

- Then $V(t)$ is defined as the set of elements in Ω of length at most t.
A Different Way to Approach the Problem

- Recall that $PSU(2)$ is just as valid a group for representing gates as $SU(2)$. It is interestingly the case that $PSU(2) \approx SO(3)$ and that $SU(2) \approx S_3$, where the $SO(3)$ is the rotation group of the sphere S^2, the first relation is by isomorphism, and the second relation is by diffeomorphism. Thus, it follows that elements of Ω correspond to solutions to:

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 5t,$$

and can be projected onto the sphere. This is a well-studied problem in number theory and lends itself to being studied numerically. In many ways, we can change the quantum problem to a study of how well this point set is distributed on the sphere.
A Different Way to Approach the Problem

- Recall that $PSU(2)$ is just as valid a group for representing gates as $SU(2)$.
- It is interestingly the case that $PSU(2) \approx SO(3)$ and that $SU(2) \approx S^3$, where the $SO(3)$ is the rotation group of the sphere S^2, the first relation is by isomorphism, and the second relation is by diffeomorphism.
A Different Way to Approach the Problem

- Recall that $PSU(2)$ is just as valid a group for representing gates as $SU(2)$.
- It is interestingly the case that $PSU(2) \approx SO(3)$ and that $SU(2) \approx S^3$, where the $SO(3)$ is the rotation group of the sphere S^2, the first relation is by isomorphism, and the second relation is by diffeomorphism.
- Thus, it follows that elements of Ω correspond to solutions to: $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 5^t$, and can be projected onto the sphere.
A Different Way to Approach the Problem

- Recall that $PSU(2)$ is just as valid a group for representing gates as $SU(2)$.
- It is interestingly the case that $PSU(2) \approx SO(3)$ and that $SU(2) \approx S^3$, where the $SO(3)$ is the rotation group of the sphere S^2, the first relation is by isomorphism, and the second relation is by diffeomorphism.
- Thus, it follows that elements of Ω correspond to solutions to: $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 5^t$, and can be projected onto the sphere.
- This is a well-studied problem in number theory and lends itself to being studied numerically.
A Different Way to Approach the Problem

- Recall that $PSU(2)$ is just as valid a group for representing gates as $SU(2)$.
- It is interestingly the case that $PSU(2) \approx SO(3)$ and that $SU(2) \approx S^3$, where the $SO(3)$ is the rotation group of the sphere S^2, the first relation is by isomorphism, and the second relation is by diffeomorphism.
- Thus, it follows that elements of Ω correspond to solutions to: $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 5^t$, and can be projected onto the sphere.
- This is a well-studied problem in number theory and lends itself to being studied numerically.
- In many ways, we can change the quantum problem to a study of how well this point set is distributed on the sphere.
The Points of $V(2)$
The Points of $V(3)$
The Points of $V(4)$
Efficiency and Discrepancy

Solovay-Kitaev and Efficiency

The Solovay-Kitaev Theorem states that for $X \in SU(2)$ and a symmetric universal set of quantum gates, for a given $\varepsilon > 0$, there exists some $\omega \in \Omega$ of length $O\left(\log^c \left(\frac{1}{\varepsilon}\right)\right)$ approximating X within distance ε.

This guarantees that an approximation exists, but does not robustly address the relative efficiency of different choices of gate set. To that end, Sarnak introduces the covering exponent, defined below, to serve this purpose:

$$K(T) \equiv \limsup_{\varepsilon \to 0} \frac{\log |V(t_\varepsilon)|}{\log \left(1/\mu(B(\varepsilon))\right)},$$

where t_ε is the smallest t such that for the given ε, $V(t_\varepsilon)$ approximates all of $SU(2)$ within a distance ε, $B(\varepsilon)$ is an arbitrary ball of radius ε in $SU(2)$ and μ is a Haar measure on $SU(2)$.

Brent Mode (University of Louisville)
Solovay-Kitaev and Efficiency

- The Solovay-Kitaev Theorem states that for $X \in SU(2)$ and a symmetric universal set of quantum gates, for a given $\varepsilon > 0$, there exists some $\omega \in \Omega$ of length $O \left(\log^c \left(\frac{1}{\varepsilon} \right) \right)$ approximating X within distance ε.

- This guarantees that an approximation exists, but does not robustly address the relative efficiency of different choices of gate set.
Efficiency and Discrepancy

Solovay-Kitaev and Efficiency

- The Solovay-Kitaev Theorem states that for $X \in SU(2)$ and a symmetric universal set of quantum gates, for a given $\varepsilon > 0$, there exists some $\omega \in \Omega$ of length $O \left(\log^c \left(\frac{1}{\varepsilon} \right) \right)$ approximating X within distance ε.

- This guarantees that an approximation exists, but does not robustly address the relative efficiency of different choices of gate set.

- To that end, Sarnak introduces the covering exponent, defined below, to serve this purpose:

$$K(T) \equiv \limsup_{\varepsilon \to 0} \frac{\log |V(t_\varepsilon)|}{\log \left(\frac{1}{\mu(B(\varepsilon))} \right)},$$

where t_ε is the smallest t such that for the given ε, $V(t_\varepsilon)$ approximates all of $SU(2)$ within a distance ε, $B(\varepsilon)$ is an arbitrary ball of radius ε in $SU(2)$ and μ is a Haar measure on $SU(2)$.
Efficiency and Discrepancy

Bounds on K

- From the definition, it follows that if T approximates all of $SU(2)$ with optimal efficiency, then $K(T) = 1$.

This is not the case: Sarnak has proven that $4 \leq K(T) \leq 2$. However, T is optimally efficient almost everywhere. It is suspected that $K(T) = \frac{4}{3}$; what remains is for this to be proven or refuted.
Efficiency and Discrepancy

Bounds on K

- From the definition, it follows that if T approximates all of $SU(2)$ with optimal efficiency, then $K(T) = 1$.
- This is not the case: Sarnak has proven that $\frac{4}{3} \leq K(T) \leq 2$.

Bounds on K

- From the definition, it follows that if T approximates all of $SU(2)$ with optimal efficiency, then $K(T) = 1$.
- This is not the case: Sarnak has proven that $\frac{4}{3} \leq K(T) \leq 2$.
- However, T is optimally efficient *almost everywhere*.
Efficiency and Discrepancy

Bounds on K

- From the definition, it follows that if T approximates all of $SU(2)$ with optimal efficiency, then $K(T) = 1$.
- This is not the case: Sarnak has proven that $\frac{4}{3} \leq K(T) \leq 2$.
- However, T is optimally efficient *almost everywhere*.
- It is suspected that $K(T) = \frac{4}{3}$; what remains is for this to be proven or refuted.
Efficiency and Discrepancy

Conjecture on K

- We conjecture $\varepsilon \leq f(t_\varepsilon) 5^{-t_\varepsilon/4}$ for a function $f : (0, \infty) \rightarrow (1, \infty)$ satisfying:

 $$\lim_{t_\varepsilon \to \infty} \frac{\log(f(t_\varepsilon))}{t_\varepsilon}$$

exists with value 0.
Conjecture on K

- We conjecture $\varepsilon \leq f(t_\varepsilon)5^{-t_\varepsilon/4}$ for a function $f : (0, \infty) \rightarrow (1, \infty)$ satisfying:

$$\lim_{t_\varepsilon \rightarrow \infty} \frac{\log(f(t_\varepsilon))}{t_\varepsilon}$$

exists with value 0.

- Let $\nu(5^{t_\varepsilon})$ denote the set of integer solutions of the quadratic form:

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 5^{t_\varepsilon}.$$
Efficiency and Discrepancy

Conjecture on K

- We conjecture $\varepsilon \leq f(t_\varepsilon)5^{-t_\varepsilon/4}$ for a function $f : (0, \infty) \rightarrow (1, \infty)$ satisfying:

$$\lim_{t_\varepsilon \rightarrow \infty} \log(f(t_\varepsilon))/t_\varepsilon$$

exists with value 0.

- Let $\nu(5t_\varepsilon)$ denote the set of integer solutions of the quadratic form:

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 5t_\varepsilon.$$

- Let $M \equiv M_{S^3}(\mathcal{N})$ denote the covering radius of the points $\mathcal{N} = \nu(5t_\varepsilon) \cup \nu(5t_\varepsilon^{-1})$ on the sphere S^3 in \mathbb{R}^4.

Conjecture on K

- We conjecture $\varepsilon \leq f(t\varepsilon)5^{-t\varepsilon/4}$ for a function $f : (0, \infty) \rightarrow (1, \infty)$ satisfying:

 $$\lim_{t\varepsilon \rightarrow \infty} \frac{\log(f(t\varepsilon))/t\varepsilon}{t\varepsilon}$$

 exists with value 0.

- Let $\nu(5t\varepsilon)$ denote the set of integer solutions of the quadratic form:

 $$x_1^2 + x_2^2 + x_3^2 + x_4^2 = 5t\varepsilon.$$

- Let $M \equiv M_{S^3}(\mathcal{N})$ denote the covering radius of the points

 $\mathcal{N} = \nu(5t\varepsilon) \cup \nu(5t\varepsilon^{-1})$ on the sphere S^3 in \mathbb{R}^4.

- Then $M \sim f(\log N)N^{-1/4}$. Here $N \equiv N(\varepsilon) = 6 \cdot 5t\varepsilon - 2$.
Conjecture on K

- We conjecture $\varepsilon \leq f(t_\varepsilon)5^{-t_\varepsilon/4}$ for a function $f : (0, \infty) \to (1, \infty)$ satisfying:
 \[
 \lim_{t_\varepsilon \to \infty} \log(f(t_\varepsilon))/t_\varepsilon
 \]

 exists with value 0.

- Let $\nu(5t_\varepsilon)$ denote the set of integer solutions of the quadratic form:
 \[
 x_1^2 + x_2^2 + x_3^2 + x_4^2 = 5t_\varepsilon.
 \]

- Let $M \equiv M_{S^3}(\mathcal{N})$ denote the covering radius of the points
 \[
 \mathcal{N} = \nu(5t_\varepsilon) \cup \nu(5t_\varepsilon^{-1})
 \]
 on the sphere S^3 in \mathbb{R}^4.

- Then $M \sim f(\log N)N^{-1/4}$. Here $N \equiv N(\varepsilon) = 6 \cdot 5^{t_\varepsilon} - 2$.

- Assuming this conjecture implies that $K(T) \leq \frac{4}{3}$ and then also that
 $K(T) = \frac{4}{3}$.
A Valid Example
With $t_\varepsilon \sim \log(N)$, consider:

$$f(t_\varepsilon) = t_\varepsilon^{(\log(t_\varepsilon \log(t_\varepsilon \cdots)))}$$

where the term $\log(t_\varepsilon)$ is nested n times. Then easily we have

$$\log(f(t_\varepsilon))/t_\varepsilon \sim \frac{(\log(\log N))^{n+1}}{\log N}$$

which decays to 0 for large enough N.
Efficiency and Discrepancy

An Invalid Example
On the other hand for a function which grows faster, say

\[f(t_\varepsilon) = t_\varepsilon^t \]

we easily have

\[\log(f(t_\varepsilon))/t_\varepsilon \sim (\log(\log N)) \]

which diverges for large enough \(N \).
Conclusions

- Quantum computing represents a fundamental departure from the classical algorithms of yesteryear.
- Quantum logic gates are represented by arbitrary unitary matrices.
- A major unsolved problem in quantum computing is determining the efficiencies of universal gate sets.
- One can view these gates as points on a sphere and use number theoretic tools like mesh norm and covering exponent.
- We conjecture a condition on mesh norm which allows proof that $K(T) = \frac{4}{3}$.
References

Acknowledgments

- Thanks to Dr. Damelin for his collaboration and insights.
- Research for this REU was supported by funding from the National Science Foundation.
Definition of an Invariant Metric

A metric or distance function on a set X is defined as $d : X \times X \to \mathbb{R}_{\geq 0}$ satisfying $\forall x, y, z \in X$:

1. $d(x, y) \geq 0$
2. $d(x, y) = 0 \iff x = y$
3. $d(x, y) = d(y, x)$
4. $d(x, z) \leq d(x, y) + d(y, z)$.
Definition of a Ball A ball in a metric space is defined such that
\[B(\gamma, \varepsilon) = \{ x \in G \mid d(x, y) < \varepsilon \}. \]
Definition of a Haar Metric

Let X be a set and $\mathcal{P}(X)$ be the power set of X. Then $\Sigma \subseteq \mathcal{P}(X)$ is called a σ-algebra if it satisfies the following:

1. $X \in \Sigma$

2. $\forall A \in \Sigma$, $X - A \in \Sigma$

3. $\forall A_1, A_2, \cdots \in \Sigma$, $A_1 \cup A_2 \cup \cdots \in \Sigma$

The elements of a σ-algebra are called measurable sets.
Definition of a Haar Metric
In a topological space X, a Borel set is any set that can be formed from open sets using countable unions, countable intersections, and relative complements. The collection of all Borel sets on X forms a σ-algebra called the Borel algebra. Further, the Borel algebra is the smallest algebra containing all open sets.

In a metric space (X, d), compactness is equivalent to the statement that every infinite subset of X has at least one limit point in X. Similarly, a compact group is a group whose topology is compact.
Definition of a Haar Metric
Let G be a compact group. A normalized Haar measure $\mu : \Sigma \to \mathbb{R}_{\geq 0}$ on G where Σ is the Borel algebra of G satisfies:

1. $\mu(G) = 1$
2. $\forall x \in G$ and $S \in \Sigma$, $\mu(xS) = \mu(S)$
Definition of Mesh Norm The mesh norm or covering radius of a point set with respect to S^d is given as

$$M(\mathcal{N}) \equiv \max_{y \in S^d} \min_{x \in \mathcal{N}} |x - y|$$

where \mathcal{N} is the point set in question. Intuitively, the mesh norm is the radius that is required for balls centered at points of \mathcal{N} to cover all of S^d.