DNA Breaks From Neutron Radiation

Linda Poplawski
Advisor Fredrick Becchetti
UM Physics REU 2012
Types of Radiation

- Non-Ionizing
- Ionizing
 - Alpha
 - Beta
 - β +
 - β -
 - Gamma Rays
 - X-rays
 - Neutrons

http://sabinpr2.blogspot.com/2012_05_01_archive.html
Radiation Risks

- Linear No Threshold
- Threshold

Dose

- Absorbed Dose
- Kerma
- Dose Equivalent \(H = QF \times D \)
- Effective Dose Equivalent
- Effective Dose

<table>
<thead>
<tr>
<th>Type of radiation, R</th>
<th>Energy range</th>
<th>Quality or weighting factor, (w_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photons, electrons</td>
<td>All energies</td>
<td>1</td>
</tr>
<tr>
<td>Neutrons</td>
<td><10 (\text{keV})</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10–100 (\text{keV})</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>100 (\text{keV})–2 (\text{MeV})</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2–20 (\text{MeV})</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>>20 (\text{MeV})</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td><20 (\text{MeV})</td>
<td>5</td>
</tr>
<tr>
<td>Protons</td>
<td>Alpha particles, fission</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>fragments, heavy nuclei</td>
<td>20</td>
</tr>
</tbody>
</table>
Neutron Radiation

- **Sources**
 - Fission
 - Generators
 - Solar Flares
 - Cosmic Rays

- **Interactions**
 - Nuclear Accidents
 - Nuclear Terrorism
 - Space Travel

UM d-t Neutron Generator
DNA & Damages

- Plasmid DNA
- Single Strand Breaks
- Double Strand Breaks
Set Up at UM Nuclear Engineering:

DNA Sample Holder Neutron Generator
Neutron Flux

Flux Rate
\[\Phi = \frac{N}{4\pi r^2} \]

Point Source with a Shield
\[\Phi^0 = \Phi e^{-\sum_{\text{ont}}} \]

Kerma
\[K = 1.602 \times 10^{-10} E \left(\frac{f_s(E)\mu_{n,\gamma}(E)}{\rho} \right) \Phi \]

Approx. Dose
\[Time = \frac{D}{K} \]
Larger fragments travel more slowly because they experience more drag in the gel.

More DSBs will create smaller fragments causing them to move farther in the gel.
Gel Scans

Above: scan of stained gel
Left & Right: intensity peaks

Gels and samples were prepared in lab, photographed and analyzed using NIH ImageJ
Conclusions

- Threshold effect?
- Not a point source?
What’s next?

- Retesting with new block placement
- New cylindrical block
- Dose estimates from neutron activation
- Human heart cells
- γ H2AX analysis
Thanks to:

- Fredrick Becchetti
- Mike Febbaro
- Ramon Torres
- Michael Hartman
- Bruce Pierson
- Chris Meiners
- Julia Bourg
- Joel Revalee
- Jim Liu
- UM Physics
- NSF