Characterizing topological insulators: transport measurements and capacitance probe design

> Alexa Rakoski University of Michigan Physics REU 2014

## 1. What is a topological insulator?

## 2. Four-probe resistance measurements

# 3. Probe design

## Topological insulators (TIs)

- As T → 0: electrically insulating bulk; electrically conducting surface
- Has a topologically protected surface



3

## **Topological insulators**



Metal



Doped Semiconductor



**Topological Insulator** 

#### **Carrier Density of Selected Materials**

|                                                       | Metal <sup>[1]</sup> | Si: Doped<br>Semiconductor <sup>[1]</sup> | Bi <sub>2</sub> Se <sub>3</sub> : TI <sup>[2]</sup> |
|-------------------------------------------------------|----------------------|-------------------------------------------|-----------------------------------------------------|
| Carrier density<br>(e <sup>-</sup> /cm <sup>3</sup> ) | ~10 <sup>23</sup>    | ~10 <sup>15</sup>                         | ~10 <sup>17</sup>                                   |

- 1. J. Singleton. Band Theory and Electronic Properties of Solids
- 2. D. Kim, et. al. Surface conduction of topological Dirac electrons in bulk insulating Bi<sub>2</sub>Se<sub>3</sub>

August 6, 2014

University of Michigan REU 2014 4

- Test resistance as a function of temperature to determine properties of the material
- Material tested was Bi<sub>2</sub>Te<sub>2</sub>Se (BTS), a TI
- Decrease error in resistance by removing internal resistance effects of current source and wires
- Comparison to two-probe measurement





#### Voltage measured



August 6, 2014









Heating of sample of Bi<sub>2</sub>Te<sub>2</sub>Se

- Metallic behavior comparison to expected TI behavior
- Capacitance?

Figure: S. Wolgast et al, "Discovery of the First True Three-Dimensional Topological Insulator: Samarium Hexaboride", arXiv: 1211.5104 (2012)

August 6, 2014

University of Michigan REU 2014 8

## Probe design: brass head & cap



- Challenges:
  - Flat surface for mounting sample
  - Grooves for wires



## Probe design: aluminum head



#### Challenges:

- Location of connector
- Weight (grooves)



## Probe design: nylon cap

- Most complex part of probe
- Made by machine shop
  - D-shaped holes
  - Coaxial cables





## Probe design: complete!



## Using probe to study capacitance



- Test another property of TIs
- Resistance results show metallic behavior, but capacitance results may show something unique to TIs
- Versatile: dielectric constant of an insulator
- Future tests:
  - Quantum capacitance
  - Boundary between surface & bulk states

13

## Acknowledgements

- University of Michigan
- National Science Foundation
- LSA Scientific Machine Shop
- Lu Li & group, especially Fan Yu















